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Abstract

A VIasov-Maxwell equilibrium for a charged particle bunch is given in
the beam frame by the distribution function that is a function of the
single-particle Hamiltonian f = f(H), where in an axisymmetric cylinder
H = p?/2m + k ,r?/2 + k,22/2 + q¢(r,2), the kinetic energy is p?/2m,
k| and k, are the external focusing coefficients in the transverse and
longitudinal directions, and ¢ is the electrostatic potential determined self-
consistently from Poisson’s equation V2¢ = —4nq [d3pf(H). The self-
field potential ¢ introduces a coupling between the otherwise independent
r and z motions. Under quite general conditions, this leads to chaotic
particle motion. Poisson’s equation is solved using a spectral method in z
and a finite-difference method in r, and a Picard iteration method is used
to determine ¢ self-consistently. For the thermal equilibrium distribution
f = Aexp(—H/T), the single-particle trajectories display chaotic behavior.
The properties of the chaotic trajectories are characterized.



Thermal Equilibrium

External focusing potential Vo = s 12/2 + k,22/2,
k| and ky are the external focusing coefficients.

Hamiltonian
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where pr = mr, pp = mr26 and Py = MZz.
Distribution function
e no
thermal equilibrium H) = exp(—H/T).
FUH) = o 72 P (U T)

Poisson’s equation
quﬁ = —4mqgn,
with number density n = ngexp(k [ 12/2 + k,22/2 + q¢).
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Normalization
normalized lengths r, = /T/k |, T =1/r, and z = z/m,
normalized potential, ¢ = q¢/T,

V2 = —2s,exp (—7°/2 = nz°/2 - §), (4)

dimensionless parameters

n=Kz/KL sp = (4mg° no/m)/2wg

Normalized Hamiltonian : H = H/T,

= —2 2 72 72
Dr

pr=17,6pg =720, p, =72, and 1 = d/dt where t=tw,

Hereafter, we will use the normalized equations: the ‘bars’ will be
dropped and the ‘dot’ will denote the derivative with respect to the
normalized time.



Picard Solution

A mixed finite-difference, spectral method is used

o(r,z) = Z dn(r) cos(nkz), (6)

¢n(r) interpolates ¢, ; given on a radial grid.
Laplacian operator : V2 = 92 + r— 19, + 82.

The radial derivatives are approximated by the first order expressions.
V2 becomes a tri-diagonal matrix for each harmonic.

This allows a Picard iterative solution for the potential

given n, solve for ¢ given ¢, solve for ¢

He we use N, = 100,N, = 50,Ry = 20 and L, = 20.



Phase Space

For each selection of the dimensionless parameters (n,sy), a point in
phase space is described by (r,0, z, pr, pg, Pz) .

The azimuthal angle 6 is ignorable, thus the angular momentum pg
IS a constant of the motion. Each particle’'s trajectory will lie on a
constant energy surface.

A phase space subset in then specified by (pg, H), and a point in this
space is given by (7, z,pr).

Note that given (pg, H) and (r, z,p,), p- is then constrained by Eq.(5).

Poincaré section : z = 0 with p; > 0.



Chaos and Periodic Orbits

Regular and chaotic trajectories are interspersed in phase space.

Regular motion lies on invariant surfaces where the frequency ratio is
irrational.

Resonance zones, or islands, will emerge where the frequency ratio
between the r and z motions is rational.

Associated with each island chain, are the stable and unstable orbits,
which appear as O and X points on the Poincaré plot.

Chaotic trajectories arise near the unstable X point.

If the islands are so large that they overlap with nearby islands, then
regions of extended chaos will be produced.



Zero self-field : Action-angle coordinates

For the case that the self-field potential is zero, the »r and z motions
are independent and the dynamics is integrable.

The ‘action’ coordinates are

jr= (a—py)/2 0r = cos™ H[(r? — &) /B (7)
je= (P03 +p2/n2)/2 0. =tan"L(n3z/ps). (8)
where o = p2/2 —I—pg/Q’r2 +r2/2, 8= \/a2 —pg.

1
H = 2j; -|-p9 + 1n27-.

N

C(.)r/(.«(.)z — 2/77

1
resonance will exist when 2/n2 = p/q, where p,q are integers.



Small self-field : Perturbation Analysis

e Hamiltonian

1
H = 2jr 4+ pg + 127z + (9)
where p(0r, 0z, jr, jz) = &(r(Or, jr), 2(02,32)).

e Writing H = hg + chy where hg = 2j» -+ py & nZj» and hy = o, action-
angle coordinates (equivalently, invariants of the motion) for the per-
turbed motion through second order in ¢ can be constructed and
compared to the exact trajectories.

e For sufficiently small self-field potential, the agreement is generally
good.
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Poincaré section with invariant surfaces constructed from second-order
perturbation theory (n,s;) = (0.3,0.1), (py, H) = (1.0, H = 5.0).
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Equations of Motion

e With the selection of the plane z = 0 as the Poincaré section, it is
convenient to consider the independent integration parameter to be
0., rather than the time.

e [ he equations to be integrated then become

9,;, — 97’/92, (10)
ir = dijr/0s, (11)
jL = dij2/0-. (12)

where the 7 denotes the derivative with respect to 6, 6, = 2+ 0¢/0jr,
. 1
0, =n2 4 0p/0jz, drjr = —0p/00r, and d;j, = —0p/00,.

e [ he mapping from the Poincaré section to itself, the Poincaré map, is
now obtained by integrating these equations from 6, = 0 to 6, = 2.
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Lyapunov exponent

A defining feature of chaos is that particle trajectories have an extreme
sensitivity to the initial conditions.

Particle trajectory : initial conditions (0) = (6,(0), j-(0), 7.(0)) (where,
given H, j, is constrained)

Nearby trajectory x(0) + éx(0), where §j, is constrained to lie in the
constant-energy tangent space

1
67z = —(0p,00r + (24 0;,0)05r)/ (M2 + 0j,). (13)

The trajectories will evolve under Eq.(10-12), and the rate at which
the separation dx(0,) evolves is characterized by the Lyapunov expo-
nent o

o(x,0x) = lim lim 1 In [0x(0:)|

: 14
0x(0)|—0 6r—00 02 [0 (0)]| (14)
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Linearized Equations

e The limit |dx(0)] — 0 is most conveniently treated by linearizing
Eqgs.(10-12) to obtain ddx/df, = Tdox, where T is the tangent map

(00, 06, 06, \

29.7’ giz” gﬂ},z
T=| 2 T S (15)
00, 0jr 092

o5, 9j., 9.
\ 86," 9j." 84> )

e The component of dx along the most unstable direction will grow
most rapidly and dominate the computation. For an arbitrary initial
ox, the largest exponent will be calculated.

e After linearizing the equations, all that remains is to follow the tra-
jectory, while evolving the tangent vector, to determine the quantity
In|dx|/0, as 0, — oo where [dx(0)| = 1. Typically, a trajectory must
be followed hundreds of oscillations for this limit to converge.
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Periodic Orbits : Lyapunov exponent

Periodic orbit : 6,(27q) = 6,(0) 4+ 27p and j-(27q) = jr(0).

Full-period tangent map, M, at the periodic orbit is obtained

dM
db
By incorporating Eq.(13), M reduces to a 2 x 2 matrix.

= TM, with initial condition M = 1I. (16)

If the eigenvalues are real, the orbit is unstable,

Lyapunov exponent of periodic orbit opq = In \/2mgq, (17)

where A is the maximum eigenvalue.

Symmetry . periodic orbits lie on the symmetry lines 6, = O, 7. The
search for periodic orbits becomes a one-dimensional search in jr.
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Characterization of Chaos

The eigenvalues of the full period tangent map are related to a quan-
tity called the residue introduced by Greene.

The limiting residue of an appropriate sequence of periodic orbits may
be used to determine the existence, or non-existence, of an irrational
(KAM) surface.

Also, the tangent map at the periodic orbits can also be used to
estimate island widths.

This suggests that an numerically efficient method to quantify the
degree of chaos would be to locate several periodic orbits (usually
those with the lowest values of ¢ are most important, and conveniently
these are of the shortest length), estimate the widths of the islands
associated with these periodic orbits and apply a Chirikov style island
overlap criterion.
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